Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Hazard Mater Adv ; 12: 100328, 2023 Nov.
Article in English | MEDLINE | ID: covidwho-20231335

ABSTRACT

Nowadays, single-use plastic pollution attracts the attention of scholars, policymakers, and practitioners. In addition to personal protective equipment (PPEs) waste during the COVID-19 pandemic, other unpreceded plastic wastes such as packaging from online shopping and food delivery, viruses confirmatory testing, and drinking straws also contributed to pollution and worsened around the globe. This perspective aimed to provide insights into drinking plastic straws as an important source of plastic pollution. Literature searches confirmed that drinking plastic straws, unlike PPEs, have not been researched whether it is an important contributor to pollution or not during the COVID-19 pandemic. Thus, research on the pollution level of this plastic waste and its association with COVID-19 is required. Drinking straw producers and users require adequate strategies and management of this plastic pollution and more widespread rules and regulations to prevent environmental implications and health risks. This study can usefully give highlights for environmentalists, solid waste management experts, policymakers, and governments by describing the environmental impact and raising health risks of drinking plastic straw pollution.

2.
Journal of Hazardous Materials Advances ; : 100126-100126, 2022.
Article in English | Pmc | ID: covidwho-1926470
3.
Sci Total Environ ; 820: 153261, 2022 May 10.
Article in English | MEDLINE | ID: covidwho-1799732

ABSTRACT

Personal protective equipment (PPE) pollution has become one of the most pending environmental challenges resulting from the pandemic. While various studies investigated PPE pollution in the marine environment, freshwater bodies have been largely overlooked. In the present study, PPE monitoring was carried out in the vicinity of Lake Tana, the largest lake in Ethiopia. PPE density, types, and chemical composition (FTIR spectroscopy) were reported. A total of 221 PPEs were identified with a density ranging from 1.22 × 10-5 PPE m-2 (control site S1) to 2.88× 10-4 PPE m-2 with a mean density of 1.54 × 10-4 ± 2.58 × 10-5 PPE m-2. Mismanaged PPE waste was found in all the sampling sites, mostly consisting of surgical face masks (93.7%). Statistical analyzes revealed significantly higher PPE densities in sites where several recreational, touristic, and commercial activities take place, thus, revealing the main sources of PPE pollution. Furthermore, polypropylene and polyester fabrics were identified as the main components of surgical and reusable cloth masks, respectively. Given the hazard that PPEs represent to aquatic biota (e.g., entanglement, ingestion) and their ability to release microplastics (MPs), it is necessary to implement sufficient solid waste management plans and infrastructure where lake activities take place. Additionally, local authorities must promote and ensure sustainable tourism in order to maintain the ecosystems in Lake Tana. Prospective research priorities regarding the colonization and degradation of PPE, as well as the release of toxic chemicals, were identified and discussed.


Subject(s)
COVID-19 , Personal Protective Equipment , Refuse Disposal , Water Pollution , Ecosystem , Environmental Pollution , Ethiopia , Humans , Lakes , Pandemics , Plastics , Prospective Studies , SARS-CoV-2
4.
J Hazard Mater ; 426: 128070, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1561761

ABSTRACT

In the present contribution, two nationwide surveys of personal protective equipment (PPE) pollution were conducted in Peru and Argentina aiming to provide valuable information regarding the abundance and distribution of PPE in coastal sites. Additionally, PPE items were recovered from the environment and analyzed by Fourier transformed infrared (FTIR) spectroscopy, Scanning electron microscopy (SEM) with Energy dispersive X-ray (EDX), and X-ray diffraction (XRD), and compared to brand-new PPE in order to investigate the chemical and structural degradation of PPE in the environment. PPE density (PPE m-2) found in both countries were comparable to previous studies. FTIR analysis revealed multiple polymer types comprising common PPE, mainly polypropylene, polyamide, polyethylene terephthalate, and polyester. SEM micrographs showed clear weathering signs, such as cracks, cavities, and rough surfaces in face masks and gloves. EDX elemental mapping revealed the presence of elemental additives, such as Ca in gloves and face masks and AgNPs as an antimicrobial agent. Other metals found on the surface of PPE were Mo, P, Ti, and Zn. XRD patterns displayed a notorious decrease in the crystallinity of polypropylene face masks, which could alter its interaction with external contaminants and stability. The next steps in this line of research were discussed.


Subject(s)
COVID-19 , Personal Protective Equipment , Humans , Pandemics , Plastics , SARS-CoV-2
5.
Environ Syst Res (Heidelb) ; 10(1): 8, 2021.
Article in English | MEDLINE | ID: covidwho-1040027

ABSTRACT

BACKGROUND: The extensive use and production of PPE, and disposal in the COVID-19 pandemic increases the plastic wastes arise environmental threats. Roughly, 129 billion face masks and 65 billion plastic gloves every month are used and disposed of on the globe. The study aims to identify the polymer type of face masks and gloves and sustainable plastic waste management options. RESULTS: The identification of polymers, which can help for fuel conversion alternatives, was confirmed by FTIR and TGA/DTA analysis and confirms that the polymeric categories fit for the intended purpose. Moreover, the handling technique for upcycling and the environmental impacts of the medical face mask and glove were discussed. The FTIR result revealed that face masks and gloves are polypropylene and PVC thermoplastic polymer, respectively and they can be easily transformed to fuel energy via pyrolysis. The endothermic peaks around 431 ℃ for medical glove and 175 ℃ for surgical is observed tells that the melting point of the PVC and polypropylene of plastic polymers, respectively. The pyrolysis of the face mask and glove was carried out in a closed reactor at 400 ℃ for 1 h. Conferring to lab-scale processes, liquid, and wax fuel rate of 75%, char of 10%, and the rest non-condensable gases were estimated at the end. CONCLUSIONS: It can be concluded that the medical plastics can be recycled into oil due to their thermoplastics nature having high oil content and the waste to energy conversion can potentially reduce the volume of PPE plastic wastes.

6.
Mar Pollut Bull ; 163: 111879, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-947308

ABSTRACT

Since the COVID-19 outbreak was declared as a global health emergency, the use of multiple types of plastic-based PPEs as a measure to reduce the infection increased tremendously. Recent evidence suggests that the overuse of PPEs during the COVID-19 pandemic is worsening plastic pollution in the marine environment. In this short focus, we discussed the potential sources, fate, and effects of PPE plastic to the marine environment and proposed five key research needs, involving (1) the occurrence and abundance of PPEs, (2) the sources, fate, and drivers of PPEs, (3) PPEs as a source of microplastics, (4) PPEs as a vector of invasive species and pathogens, and (5) PPEs as a source and vector of chemical pollutants in the marine environment. We suggest that addressing these knowledge gaps will lay the groundwork for improved COVID-19-associated waste management and legislation to prevent marine plastic pollution to continue exacerbating.


Subject(s)
COVID-19 , Plastics , Humans , Microplastics , Pandemics , SARS-CoV-2
7.
Mar Pollut Bull ; 159: 111517, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-669788

ABSTRACT

Although there have been enormous reports on the microplastic pollution from different plastic products, impacts, controlling mechanisms in recent years, the surgical face masks, made up of polymeric materials, as a source of microplastic pollution potential in the ecosystem are not fully understood and considered yet. Current studies are mostly stated out that microplastics pollution should be a big deal because of their enormous effect on the aquatic biota, and the entire environment. Due to the complicated conditions of the aquatic bodies, microplastics could have multiple effects, and reports so far are still lacking. In addition to real microplastic pollutions which has been known before, face mask as a potential microplastic source could be also researching out, including the management system, in detail. It is noted that face masks are easily ingested by higher organisms, such as fishes, and microorganisms in the aquatic life which will affect the food chain and finally chronic health problems to humans. As a result, microplastic from the face mask should be a focus worldwide.


Subject(s)
Coronavirus Infections , Pandemics , Plastics , Pneumonia, Viral , Water Pollutants, Chemical/analysis , Animals , Betacoronavirus , COVID-19 , Ecosystem , Environmental Monitoring , Humans , Masks , Microplastics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL